TH Köln hat Sensoren für schwingende Maschinen getestet

Verantwortlicher Redakteur:in: Rainer Trummer 3 min Lesedauer

Anbieter zum Thema

Schwingende Maschinen wie Rüttelplatten, Sortieranlagen und Siebmaschinen können aufgrund hoher Beschleunigungskräfte und rauer Witterungsbedingungen bisher nicht kontinuierlich im laufenden Prozess überwacht werden. Um die vorausschauende Wartung in Zukunft zu ermöglichen, hat die TH Köln in Kooperation mit zwei Industriepartnern ein System energieautarker Sensoren entwickelt und erfolgreich im Labor getestet.

(Quelle: TH Köln)

„Die Überwachung vibrierender Maschinen mit Hilfe von Sensoren, die per Kabel oder Akku mit Strom versorgt werden, ist nicht praktikabel, da zur Wartung der Kabelverbindung oder Wechsel des Akkus ein Stopp der Maschinen notwendig ist“, erläutert Projektleiter Prof. Dr. Axel Wellendorf vom Institut für Allgemeinen Maschinenbau der TH Köln. „Wir nutzen die Schwingungen während des Betriebs der Anlagen und wandeln einen Teil der auftretenden mechanischen Energie in elektrische Energie um, die wiederum den Betrieb des kabellosen Sensorsystems sicherstellt.“

Sensoren messen permanent die Beschleunigungskräfte der Maschine

Um eine drahtlose Überwachung zu ermöglichen, wurde in dem Projekt ein Sensorsystem entwickelt, welches durch einen Energiewandler mit integriertem Dämpfungssystem mit Strom versorgt wird. Der Energiewandler wandelt mechanische Energie aus Maschinenschwingungen in elektrische Energie um und gewährleistet so die Stromversorgung der angebundenen Sensoren. Diese messen permanent die Beschleunigungskräfte der Maschine, registrieren unter anderem starke Vibrationen, die Indikation auf eine Fehlfunktion sein können und senden die Daten an eine Auswerteeinheit. Die ermittelten Daten werden zur Überwachung und Wartungsplanung drahtlos an die Technikerinnen und Techniker gesendet.

(Das Sensorsystem wird durch einen Energiewandler mit integriertem Dämpfungssystem mit Strom versorgt. Der Energiewandler wandelt mechanische Energie aus Maschinenschwingungen in elektrische Energie um und stellt so die Stromversorgung der angebundenen Sensoren sicher. Quelle: Costa Belibasakis/TH Köln)

Das Team entwickelte mit Hilfe von numerischen Verfahren – sogenannten FEM-Simulationen – und Laborversuchen die Konstruktionsvorgaben für den Energiewandler. Anschließend wurde ein Labormuster des Energiewandlers in der Zentralwerkstatt gefertigt und an einem Schwingungsprüfstand des Labors für Schwingungstechnik und Leichtbau untersucht. „Dort haben wir Versuchsreihen für den späteren realen Einsatz durchgeführt. Der Energiewandler muss auch bei geringen Maschinenschwingungen von 1g (g = Erdbeschleunigung) genug Strom bereitstellen, dass die Sensorik und Datenübermittlung funktioniert. Gleichzeitig muss der Wandler robust ausgelegt sein und darf auch bei maximal auftretenden Schwingungen von 10g keinen Schaden nehmen“, erklärt Wellendorf.

Vorausschauende Wartung und Grenzwertermittlung

Das Sensorsystem ist in der Lage, den zeitlichen Verlauf der Schwingungen in allen drei Raumrichtungen zu ermitteln. Zur vorrausschauenden Wartung kann aufgrund dieser Daten der Zustand einzelner Maschinenbauteile in Echtzeit überwacht werden. Durch den Abgleich der Schwingungsdaten mit Grenzwerten kann zusätzlich beurteilt werden, wie zeitnah die Wartung oder der Austausch einzelner Bauteile durchgeführt werden muss. So können den Forscherinnen und Forschern zufolge Maschinenschäden verhindert und Wartungsarbeiten effizient geplant werden.

„Es ist uns gelungen, einen Energiewandler unter Laborbedingungen bei unterschiedlich starken Anregungen zu betreiben“, so Wellendorf. „Jetzt gilt es, den Energiewandler und die Funksensoren sowie deren Zusammenspiel im realen Betrieb zu erproben. In einem Folgeprojekt werden wir einen Energiewandler untersuchen, der in einem breiten Temperaturbereich und bei kleinen Anregungen funktionieren muss.“ Nach erfolgreichem Abschluss der Tests soll eine Kleinserienfertigung aufgebaut werden, um das Sensorsystem zu vermarkten.

(An das Labormuster des Energiewandlers auf dem Schwingungsprüfstand der TH Köln sind Sensoren angeschlossen, um die Schwingungen zu messen. Quelle: Costa Belibasakis/TH Köln)

Über das Projekt

Das Forschungsprojekt „RE-Con-3D – Entwicklung eines energieautarken, robusten Sensorsystems zur digitalen Erfassung mehrdimensionaler Daten zur Maschinendiagnose und -vorhersage an schwingenden Maschinen“ wurde unter der Leitung von Prof. Dr. Axel Wellendorf am Institut für Allgemeinen Maschinenbau der TH Köln von Oktober 2021 bis Ende April 2023 in Kooperation mit zwei Industriepartnern durchgeführt. Das Unternehmen INS entwickelte die elektronischen Komponenten des Sensorsystems und unterstützte die Entwicklung von Konstruktionsvorgaben für den Prototyp des Energiewandlers. Das Plastec Kunststofftechnikum Oberberg konstruierte den Energiewandler und stellte Bauteile für die Laborversuche zur Verfügung. Das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) förderte das Projekt im Rahmen des „Zentralen Innovationsprogramms Mittelstand“ (ZIM) mit rund 430.000 Euro.

Lesen Sie auch: Neue Safety-Funktionen für Roboter-Kinematiken

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung